Meprin A impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin.

نویسندگان

  • Jialing Bao
  • Renee E Yura
  • Gail L Matters
  • S Gaylen Bradley
  • Pan Shi
  • Fang Tian
  • Judith S Bond
چکیده

Meprin metalloproteases are highly expressed at the luminal interface of the intestine and kidney and in certain leukocytes. Meprins cleave a variety of substrates in vitro, including extracellular matrix proteins, adherens junction proteins, and cytokines, and have been implicated in a number of inflammatory diseases. The linkage between results in vitro and pathogenesis, however, has not been elucidated. The present study aimed to determine whether meprins are determinative factors in disrupting the barrier function of the epithelium. Active meprin A or meprin B applied to Madin-Darby canine kidney (MDCK) cell monolayers increased permeability to fluorescein isothiocyanate-dextran and disrupted immunostaining of the tight junction protein occludin but not claudin-4. Meprin A, but not meprin B, cleaved occludin in MDCK monolayers. Experiments with recombinant occludin demonstrated that meprin A cleaves the protein between Gly(100) and Ser(101) on the first extracellular loop. In vivo experiments demonstrated that meprin A infused into the mouse bladder increased the epithelium permeability to sodium fluorescein. Furthermore, monocytes from meprin knockout mice on a C57BL/6 background were less able to migrate through an MDCK monolayer than monocytes from their wild-type counterparts. These results demonstrate the capability of meprin A to disrupt epithelial barriers and implicate occludin as one of the important targets of meprin A that may modulate inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meprin A Impairs Epithelial Barrier Function, Enhances Monocyte

23 Meprin metalloproteases are highly expressed at the luminal interface of the intestine and 24 kidney and in certain leukocytes. Meprins cleave a variety of substrates in vitro including 25 extracellular matrix proteins, adherens junction proteins and cytokines, and have been 26 implicated in a number of inflammatory diseases. The linkage between results in vitro 27 and pathogenesis however, ...

متن کامل

The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation

Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...

متن کامل

A dominant mutant of occludin disrupts tight junction structure and function.

The tight junction is the most apical intercellular junction of epithelial cells and forms a diffusion barrier between individual cells. Occludin is an integral membrane protein specifically associated with the tight junction which may contribute to the function or regulation of this intercellular seal. In order to elucidate the role of occludin at the tight junction, a full length and an N-ter...

متن کامل

PKC enhances tight junction barrier function of human nasal epithelial cells in primary culture by transcriptional regulation

The epithelium of upper respiratory tissues such as human nasal mucosa forms a continuous barrier via tight junctions, which is in part thought to be regulated through a protein kinase C (PKC) signaling pathway. To investigate the mechanisms of the regulation of PKC-mediated tight junction barrier function of human nasal epithelium in detail, primary human nasal epithelial cells were treated wi...

متن کامل

Protein kinase C enhances tight junction barrier function of human nasal epithelial cells in primary culture by transcriptional regulation.

The epithelium of upper respiratory tissues such as human nasal mucosa forms a continuous barrier via tight junctions, which is thought to be regulated in part through a protein kinase C (PKC) signaling pathway. To investigate the mechanisms of the regulation of PKC-mediated tight junction barrier function of human nasal epithelium in detail, primary human nasal epithelial cells were treated wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 305 5  شماره 

صفحات  -

تاریخ انتشار 2013